| 1. | Equivalent definitions of abstract lebesgue integral 积分的等价定义 |
| 2. | Background rebuilding of time sequence signal base on lebesgue integral 积分理论的时间序列信号中的背景重建 |
| 3. | This paper describes the feature of riemann integratiable function , and point out that the space of riemann integratiable function is not perfect under the meaning of lebesgue integral 摘要综述了黎曼可积函数的基本特征,并指出黎曼可积函数列的极限运算在积分意义下是不封闭的。 |
| 4. | 103 picks up where 18 . 100b ( analysis i ) left off . topics covered include the theory of the lebesgue integral with applications to probability , fourier series , and fourier integrals 课程18 . 103是18 . 100b (分析i )的延续。本课程的主题包括:运用概率论的勒贝格积分理论,傅立叶级数,以及傅立叶积分。 |
| 5. | 103 picks up where 18 . 100b ( analysis i ) left off . topics covered include the theory of the lebesgue integral with applications to probability , fourier series , and fourier integrals 课程18 . 103是18 . 100b (分析i )的延续。本课程的主题包括:运用于机率之勒贝格积分理论,傅立叶级数,与傅立叶积分。 |
| 6. | After constrcting the perfective space , prove that this space is just the space of lebesgue integratiable function , thus explain that lebesgue integral is the form of the perfective riemann integral 在构造了完备化空间之后,证明了该空间就是勒贝格可积函数空间,从而说明了黎曼积分的完备化形式是勒贝格积分。 |
| 7. | At the beginning of 20 * century , lebesgue rebuilt riemann integral and introduced lebesgue integral . with the development of modern mathematics , the concept of integral develops too 20世纪初,集合论的观点引起积分学的变革, lebesgue以集合测度概念为基础,对riemann积分的定义加以改造,建立lebesgue积分的概念。 |